SOP: PP008.4

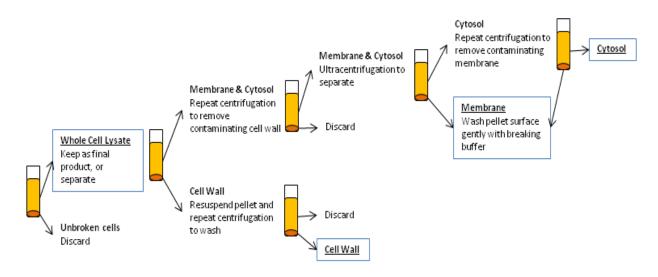
Modified 02-27-17 by KE

Subcellular Fractionation Protocol

Materials and Reagents:

- 1. $100g \gamma$ -irradiated *M. tuberculosis* whole cells
- 2. PBS (pH 7.4) with 1mM EDTA
- 3. Complete, EDTA-free protease inhibitor tablets (Roche, 11 873 580 001)
- 4. DNase: 1 mg/ml stock (stored at -20°C)
- 5. RNase: 1 mg/ml stock (stored at -20°C)
- 6. Ammonium bicarbonate
- 7. Ice
- 8. Ice bucket
- 9. Sterile 50 ml conical tubes
- 10. Sterile 40 ml Oak Ridge centrifuge tube (polypropylene)
- 11. 40 ml ultra centrifuge tubes
- 12. High speed centrifuge
- 13. Ultra centrifuge
- 14. SS-34 Rotor
- 15. 32TI Rotor
- 16. Vortexer
- 17. 50 ml plastic disposable pipets
- 18. 10 ml plastic disposable pipets
- 19. Dialysis tank
- 20. Dialysis tubing (3,500 MW cut off)
- 21. Mettler-Toledo electronic balance
- 22. Table top centrifuge

Protocol:


1	Thaw 100 g of γ -irradiated <i>M. tuberculosis</i> cells. Thawing of the bacterial pellet should be performed at 4°C (note 1).
2	Make breaking buffer by adding 1 stock of 30 μ l DNase, 1 stock of 30 μ l RNase, and one Complete, EDTA-free tablet to every 50 ml of PBS-EDTA buffer (notes 2).
3	Add 1 ml of breaking buffer to every 2 g of thawed bacterial cells. (50 ml of breaking buffer to the 100 g thawed bacterial cells)
4	Create a homogeneous suspension of bacterial cells by vortexing for 30 sec and place on ice.
5	Place 40 to 45 ml of cell suspension in French Press cell (note 3).
6	Place French Press cell in French Press, collect lysate as it is forced out of the cell with a constant pressure of 1000 PSI as measured by the gauge on the French Press.
7	Place the lysate on ice.
8	Repeat Steps 5 to 7 until all of the cell suspension has passed through the French Press cell.
9	Repeat steps 5-8 five more times. Thus the total volume of cells should go through the French Press cell 6 times (note 4).
10	Add an equal volume of breaking buffer (approximately 150 ml) with Complete, EDTA-free tablet, DNAse, and RNAse to the cell lysate, and mix by stirring with a plastic pipet.
11	Centrifuge the cell suspension at 3,000 x g (3000 rpm using table top centrifuge) for 15 min, 4°C to

remove unbroken cells. 12._____ Decant the supernatant into clean 40 ml polypropylene centrifuge tubes. Discard cell pellet (note 5). 13.____ Centrifuge the 3,000 x g supernatant (whole cell lysate) at 27,000 x g for 1 hour, 4°C. 14. Decant the supernatant (cytosol and membrane) into clean 40 ml polypropylene centrifuge tubes. 15._____ Suspend each pellet (cell wall) in breaking buffer without DNase or RNase (30 ml) and form a homogeneous suspension by vortexing. 16.____ Centrifuge the cytosol and membrane supernatant and the resuspended cell wall pellet as in step 13 to remove residual contaminating material. 17.____ Decant and discard the supernatant from the cell wall pellet and save the pellet back for QC. Collect the cytosol and membrane supernatant in 40 ml ultra centrifuge tubes and discard the pellet. 18._____ Balance the ultra-centrifuge tubes very precisely (note 6). 19. _ Centrifuge the supernatant at 100,000 x g (27,000 rpm using the 32TI rotor) for 4 hr, 4°C. 20. Collect the supernatant in clean 40 ml ultra centrifuge tubes. Save all pellets, as these are the membrane fraction. 21. Gently wash the 100,000 x g pellets (membrane) with breaking buffer without DNase or RNase. (note 7) 22.____ Repeat ultracentrifugation as in step 19. 23.____ Collect the final 100,000 x g supernatant (cytosol) in 50 ml conical tubes. Save and wash membrane pellets. 24.____ Suspend the washed 100,000 x g pellets in 10 mM ammonium bicarbonate and pool together (approximately 80 ml total). 25.____ Suspend each 27,000 x g cell wall pellet from step 17 in 10 mM ammonium bicarbonate (approximately 20 ml each) and pool together. 26._____ Place the cell wall, membrane, and cytosol preparations in 3500 MWCO dialysis tubing (allow tubing to sit in water for 30 minutes before adding sample) and dialyze against 10 mM ammonium bicarbonate for 24 hr at 4°C with three changes of buffer. 27.____ After dialysis, collect the fractions in 50 ml conical tubes. 28._____ Remove a small aliquot (100 μl) of each preparation for QC. 29. ____ Estimate the protein concentrations by BCA (note 8). 30._____ Run 4 μg of each fraction on a gel and silver stain (note 9). 31.____ Aliquot fractions (default quantity is 1 mg) and store at -80°C

Notes:

- 1. This fractionation scheme deals with highly labile proteins and proteases that are found in differing fractions of *Mycobacterium tuberculosis* strains. It is important to keep the samples cool at all times, storing them for short periods of time at 4°C (or on ice) and for long periods of time at -80°C.
- 2. It is important to keep the buffer cool (in a refrigerator or on ice) after the addition of the protease inhibitor tablet, DNase, and RNase. The DNase and RNase need only be kept in the breaking buffer until the 27,000xg centrifugation (step 13) where the cell wall is fractionated from the cell membrane/cytosol fraction. After this

- point, use buffer without DNase and RNase.
- 3. See SOP: SP027 for use of the french press.
- At this point the efficiency of cell lysis should be checked by acid fast staining and microscopy (see SOP SP035). At least 90% of the cells should be lysed.
- 5. The supernatant is whole cell lysate. If this is one of the desired products, some or all of the lysate can be reserved and completed as described in SOP PP007.
- 6. Centrifuge tubes must be completely full and must be balanced to within 20 mg using the Mettler-Toledo electronic balance.
- 7. It is important to wash the membrane pellets immediately, as they are much more likely to be disrupted after storage. If the pellets are disrupted during washing, the centrifuge tubes must be filled with breaking buffer and centrifuged as in step 19.
- 8. The cell wall will not be completely in solution, so be sure that it is a uniform suspension before performing the BCA and all other QC procedures. For BCA use SP003.
- 9. See SOP SP007 for running gels and SP012 for silver staining.

References:

Hirschfield, G. R., M. McNeil, and P. J. Brennan. 1990. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacteriol 172:1005-13.

Lee, B. Y., S. A. Hefta, and P. J. Brennan. 1992. Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect Immun 60:2066-74.

Lucas MC, Wolfe LM, Hazenfield RM, Kurihara J, Kruh-Garcia NA, Belisle J, Dobos KM. 2015. Fractionation and analysis of mycobacterial proteins. Methods Mol Biol. 1285:47-75.