SOP: PP017.3 ## **Modified 01/24/2013 by SOS** ## SOP for QC Analysis of LAM, LM, and PIM6 ## **Materials and Reagents:** - 1. Pure LAM, LM, or PIM6 (see SOP PP016) - 2. Endotoxin Free Water - 3. D₂O, 99% - 4. D_2O , 100%, 0.75 ml vials - 5. Alditol Acetate Reagents - 6. SDS-PAGE Supplies - 7. Western Blotting Supplies - 8. CS-35, α-LAM Antibody - 9. LAL Assay Reagents - 10. 13x100mm Glass Culture Tubes with Screw Caps - 11. NMR Tube - 12. 9" Borosilicate glass Pasteur pipets - 13. 1.2ml Cryovials - 14. Savant - 15. GC | Protocol
NMR | : | |-----------------|---| | 1 | Resuspend dried sample in endotoxin free water at a concentration of about 10 mg/ml based on weight and transfer to $16x100$ glass tube that has been acetone washed and air dried. | | 2 | Remove approximately half of the sample and transfer to another tube, being sure to note the volume removed (note 1) and dry on savant (note 2). | | 3 | To the dried material, add 1 ml 99% D2O and dry on the savant. | | 4 | Repeat D2O exchange (step 3) once more. | | 5 | Add the entire contents of one vial of 100% D ₂ O. Get sample into suspension and then use an extra-long (9") pasteur pipet to transfer to a clean NMR tube (note 3), cap the tube, and wipe the outside dry with a kimwipe. | | 6 | Run NMR (note 4). | | 7 | Using an extra-long pasteur pipet, transfer sample back into the 16x100 glass tube and place on the savant to dry. | | 8 | Resuspend sample in the same volume of water as was removed in step 2. This will restore the sample to its original concentration. | | Ouantita | ation by GC | | | From the half of the material, transfer 10 µl aliquots to each of three 13x100 glass tubes that have been acetone washed and air dried. This will be 9 tubes total, 3 each of LAM, LM and PIM6 (note 5). | | 10 | Perform alditol acetate derivation on sample (note 6). | | 11 | Run GC on sample and calculate the concentration of LAM, LM, or PIM6 (note 7). | | Gel & B | <u>lot</u> | | 12 | Based on the calculated concentration from step 11, run 3 µg of each sample on a SDS gel and silver stain the gel with the periodic acid step (note 8) | | 13 | Run 3 μ g of each sample on a western blot developed with CS-35 or other α -LAM antibody (note 9). | | | | | | | | te 9). | | | | | |------------------------------------|---|--|---|--|--|---|--|--|---|--|--|--|--| | | R | | ination l
L assay | | ate and calc | ulate endo | otoxin a | mount r | elative 1 | to your s | ample co | oncentrat | ion (note | | MA
15 | T | or PIM6
his Step
OF anal | For PI | M6 Only | : Submit 50 |) µg PIMo | 6 (at 2 m | ng/ml in | 2:1, ch | loroform | n:methan | ol) for M | IALDI- | | | <u>quot</u> A | L
L | AM, Sm | egLAM -
LAM - 10 | | ollowing | amounts | 3: | | | | | | | 17 | F | reeze-dr | y by lyo | philizatio | n (note 11) | | | | | | | | | | 4. 5. | This is NMR a starting NMR i See SC To clea methan The NN availab of LAM LepLA acetate | g with stops not need as not need to perform NMR not | g perform
ep 9. If
cessary for ope
tubes do
one. After
the chemic
te. If NM
and PIM
the quantital, LepLA
un various
on the sand
evelop to
compare
vivide the | ned on thi
your samp
for PIM6.
eration of
o a three we
er the was
stry depar
IR shows.
ated by G
am conce-
us quanting
me gel, ru
he gel by
band inter-
e estimate
letermined | the Savant wash with eaches, rinse eaches of a known tration is each of a known tration is each of a known tration in the continue of Alditol Aldito | e sample, han 6 ml, ach of the ach tube of ining/orientaminants, and LAM to taining (Stimate the of µg by 3 SOP start | you can it will b following for following the standard of | ng solv
h 99% lishould be
the dialy
y too sn
dization
rd on SI
ntified
12 for S
r of µg
aber of µ
ep 13. | ents, in D ₂ O and e sched ysis designall to so a geodesic possible of Silver S | order: Management of the worder: Management of the worder: Management of the worder | MilliQ endo air dry ore first SOP PF large amows: , 2 μg, and sing period | if the saminple for Indotoxinates. SOF 2016 for ounts to and 3 µg indic acid | nple,
NMR.
free H ₂ O,
Ps are
separation
alditol | | | | culate the | e amoun | t of LAM | , LM, and l | PIM6, see | below t | able: | T | 1 | . | 1 | · · · · · · · · · · · · · · · · · · · | | | | NS1 | NS2 | LAM1 | LAM2 | LAM3 | LM1 | LM2 | LM3 | PIM1 | PIM2 | PIM3 | Areas | | Ara
Mai
Myo | n
O | NS | LAM | LM | PIM | Ave.
Areas | | | | | | | | All / Scyllo PIM NS Ara Man Myo LAM LM | | LAM | LM | PIM | Sample/ | LAM: Add up Ara, Man, and Myo to give you concentration | |-----|-----|----|-----|----------|---| | Ara | | | | External | of LAM per 10 μl (or sample volume used to prepare alditol | | Man | | | | Std | acetate). | | Myo | | | | | | | | | | | | LM: Add up Man and Myo to give you concentration of LM | | | LAM | LM | PIM | Sample | per 10 µl (or sample volume used to prepare alditol acetate). | | Ara | | | | x 25 | | | Man | | | | | PIM: Add up Man and Myo to give you concentration of PIM | | Myo | | | | | per 10 µl (or sample volume used to prepare alditol acetate). | - 8. See SOP SP007 for running SDS-PAGE gels, SOP SP012 for Silver Staining (use periodic acid step). - 9. See SOP SP011 for Western Blot. When developing the western blot, use CS-35 as the primary antibody and anti-mouse IgG as the secondary antibody. LM should be negative for LAM by western blot. PIM6 requires only a silver stain for QC. - 10. See SOP SP020 for LAL Assay procedure and endotoxin calculation. Endotoxin amount must be less than 10 ng endotoxin/mg sample. - 11. See SOP SP004 for Lyophilization.