Dr. Slayden’s laboratory studies a variety of emerging and medically important pathogens including multi-drug resistant M. tuberculosis and NTMs, F. tularensis, B. pseudomallei, Y. pestis and B. anthracis. This research allows for targeting of the unique metabolic activities of these bacterial populations.
Critical gaps in knowledge still remain regarding bacterial regulatory mechanisms as they relate to cell cycle progression, coordination of cell division and elongation, and compartmentalization of cell division and cell wall biosynthesis. Using a “biology first” approach allowed us to establish important links between key regulatory mechanisms involved in cell cycle progression-adaptive metabolism-TA loci resulting in asymmetric division, phenotypic differentiation, and population heterogeneity.
Streamlining drug discovery to progress and prioritize candidates and identify clinically relevant molecular targets remains a challenge. We have elucidated in vitro-in vivo relationships and information about drug efficacious mode of action, and host-pathogen interactions, specifically dynamics between the host response. In addition to improving the discovery of drugs with efficacy in animal models of infection, this research has resulted in the development of novel therapeutic interventions that involve both traditional target-based small molecular drug discovery and the development of host immune-modulatory potentiating agents.
The Slayden laboratory uses this information in a multi-disciplinary approach to drug discovery and development of preclinical lead compounds and potentiating agents with efficacy against specialized bacterial populations.
People
contact information
Lab: Research Innovation Center (RIC) Room D120
(970) 491-2902
richard.slayden@colostate.edu